Understanding and Conducting Measurement System Analysis (MSA)

Dr David Scrimshire FRAeS, FCME, BSc (1st Hons), PhD Managing Director – TEC Transnational Ltd

QUOTATIONS ABOUT ACCURACY

- "No measurement is exact. Every measurement has variation."
- —W. Edwards Deming Teaching on statistical thinking
- "All measurements are subject to error, and the greatest mistake in statistics is to believe that a measurement is exact,
- Joseph M. Juran Early SPC lectures
- "Without a standard, there is no logical basis for making a decision or taking action. Juran on Planning for Quality
- "Accuracy is a property of the data, not the instrument.
- Genichi Taguchi Formreanae on measurement error

QUOTATIONS ABOUT PRECISION

- "If you cannot measure it, you cannot control it."
- W. Edwards Deming Commoniy cited from lectures
- "The object of taking measurements is to obtain information, not numbers,
- Walter A. Shewhart Statistical Method from the Viewpoint of Quality Control
- "A measurement system that cannot detect change is useless for improvement
- Donald J. Wheeler Gauge R&R teaching
- "Precision and consistency are essential if the data are to be trusted.
- Lord Kelvin Wheeler on measurement system capability
 Lecture to the Institution of Civil Engineers (1883)

TEC Transnational Ltd

https://tectransnational.com/

Introduction

Just as the processes that create products may vary, the process of obtaining measurements and data also have variation and may produce incorrect results.

"No measurement is exact. Every measurement has variation" – Deming

Measurement System Analysis (**MSA**) is a statistical method used to assessing the quality of a measurement system for making quality control decisions, by determining the amount of variation in the data it collects. It helps distinguish between variation caused by the actual process and variation caused by the measurement system itself (i.e. gauge, operator, procedure). By ensuring data is accurate and consistent, MSA prevents wasted effort on fixing the wrong problem and builds confidence in data-driven improvements.

"All measurements are subject to error, and the greatest mistake in statistics is to believe that a measurement is exact" – Shewhart

MSA should be conducted as part of New Product Introduction (NPI) to validate the measurement system prior to production. Other situations where MSA should be repeated, include: changes to gauge design, refurbishment/repair, environment, product design change to the feature being measured, etc. In any event it increasingly becoming a customer-specific requirement!

"Inadequate metrology leads to wrong engineering decisions" – Taguchi

So, let's get started by identifying the product **characteristic** to be measured and selecting the **gauge** we wish to use

Characteristic identification

The *type* of *characteristic* to be measured must be identified and its associate '*requirements*' confirmed –

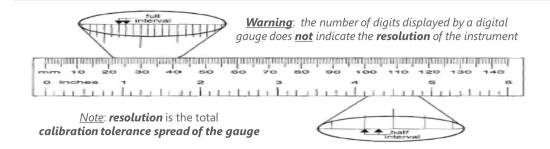
- product control: the criticality and specification (i.e. nominal, LSL and USL)
 used to determine conformance or nonconformance assessment of the
 measurement system based on the tolerance [%GRR to TOLERANCE]
- process control: the control specifications (i.e. LCL and UCL) for SPC (e.g. X_{bar} & R Chart) assessment of the measurement system based on process variation [%GRR to PROCESS VARIATION]

Also, the **characteristic** *classification* must be established (e.g. Key Characteristic, Critical, Major or Minor) – usually specified by the customer or the design authority.

Gauge selection

When selecting a gauge to measure a product characteristic, you must first consider compatibility with the part geometry and resolution (discrimination).

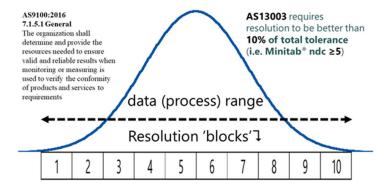
part geometry -


- Size and shape of the part: Ensure the gauge can physically access the feature
- Surface condition: Rough or reflective surfaces may require non-contact gauging like optical or air gauges
- Internal vs. external features: Bore gauges for internal diameters, calipers or micrometres for external ones

resolution -

Tolerance of the feature: Choose a gauge that is at least 10 times more precise than the tolerance of the feature being measured (10:1 rule)

Type of measurement: Decide whether you need to measure dimensions (length, diameter), form (flatness, roundness), or surface finish

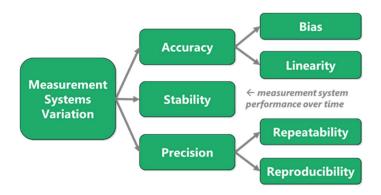

The **resolution** (**discrimination**) of a gauge is its ability to detect and faithfully indicate small changes in a product characteristic.

Typically, **resolution** is the value of the **smallest graduation** on the scale of the gauge (also known as '**gauge tolerance**').

If the gauge has 'coarse' graduations, then a half-graduation can be used (also known as '**interpolation**').

Related standards (e.g. **AS13003**) typically require resolution to be better than 10% of the product specification (i.e. total tolerance: USL – LSL).

Strictly, this 10 to 1 'rule-of-thumb' should be defined as one-tenth of the range to be measured. For SPC purpose this would be one-tenth of the process control limits (i.e. range: UCL – LCL).


<u>Note</u>: **Minitab**[®] refers to number of distinct categories – same concept, but different calculations (the Minitab[®] criteria for acceptability is $ndc \ge 5 - not = 10$)

Use of a statistical app

Calculations and graphics are best undertaken using a suitable **statistical** *app* – here we have adopted **Minitab**® that is a recognized industry standard, and its results are acceptable to most customers in the automotive and aerospace sectors.

Types of MSA studies

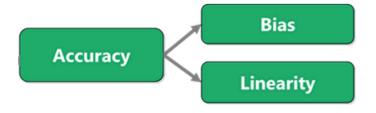
In manufacturing and assembly operations, **variability** within both the process and product is inevitable. All measurements systems are also subject to **variability**, which can be **categorized** as –

Accuracy = Linearity + Bias

Linearity – a measure of how the size of the part affects the accuracy of the measurement system (i.e. the difference in the observed accuracy values through the expected range of measurements)

Bias – a measure of the impartiality in the measurement system (i.e. the difference between the observed average part measurement and a master value – oversize *or* undersize)

Precision = Repeatability + Reproducibility


Repeatability – the variation due to the measuring device (the Gauge) i.e. the variation observed when the same operator (the Appraiser) measures the same part repeatedly with the same device.

Reproducibility – the variation due to the measurement system i.e. the variation observed when different operators (the Appraisers) measure the same parts using the same device and same work instruction.

Stability – a measure of how accurately the system performs over time i.e. the total variation obtained with a particular device, on the same part, when measuring a single characteristic over time (e.g. minutes, hours) – environment/human factors?

Accuracy (Linearity & Bias) study

To determine the accuracy (linearity + bias) of a measurement system, first select five parts and measure each; by layout inspection (CMM); to determine their reference values.

Case Study

In this Case Study, the 'parts' were represented by calibrated gauge **blocks** of known values: 2.00, 4.00, 6.00, 8.00 and 10.00 respectively.

A single **operator** then measured each 'part' **12-times** using a Micrometer – total of **60 measurements** – using the same gauge.

These are the results as recorded ...

ive 'reference' parts measured 12-times each

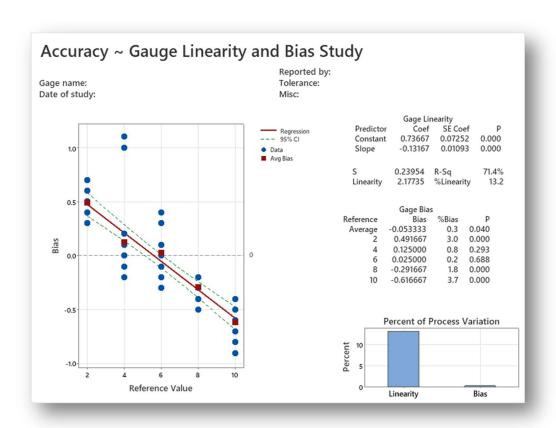
	Part	1	2	3	4	5
	Reference value	2.00	4.00	6.00	8.00	10.00
		2.7	5.10	5.80	7.60	9.10
same operator ~ same gauge		2.5	3.90	5.70	7.70	9.30
ga		2.4	4.20	5.90	7.80	9.50
ame		2.5	5.00	5.90	7.70	9.30
		2.7	3.80	6.00	7.80	9.40
ator	Trails	2.3	3.90	6.10	7.80	9.50
pera	Ţ	2.5	3.90	6.00	7.80	9.50
o əı		2.5	3.90	6.10	7.70	9.50
san		2.4	3.90	6.40	7.80	9.60
		2.4	4.00	6.30	7.50	9.20
		2.6	4.10	6.00	7.60	9.30
		2.4	3.80	6.10	7.70	9.40

Study results

Using the data, a Gauge Linearity and Bias Study was performed using Minitab $^{\rm @}-$

Choose Stat > Quality Tools > Gage Study > Gage Linearity and Bias Study

in Part numbers, enter Part Number


in Reference values, enter Master Value

in Measurement data, enter Measurement Value

in Process variation, optionally enter 16.5368 (optional)

Click OK

The following analysis is displayed –

The **blue circles** represent the *difference* between a part's reference value and the operator's measurements of the part, and the **red squares** represent the *average* values. A **red line** is fitted through these values, using ordinary least squares regression.

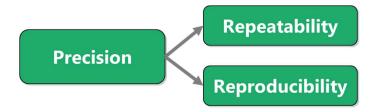
Ideally, the plotted **red line** should be close to the horizontal, indicating that the average bias is relatively constant and does not depend on the reference value.

When the **red line** is close to 0 (zero), the difference between the observed average measurement and the reference value is very small, which also indicates that the system does not contain significant bias.

Linearity assesses the difference in average bias through the expected operating range of the measurement system.

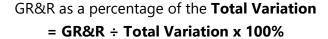
In this example, measurements for smaller parts are higher than their corresponding reference part values. Measurements for larger parts tend to be lower than their corresponding reference part values. The **%Linearity** (absolute value of the slope x 100) is **13.2** – therefore, **linearity** accounts for approximately **13%** of the overall process variation.

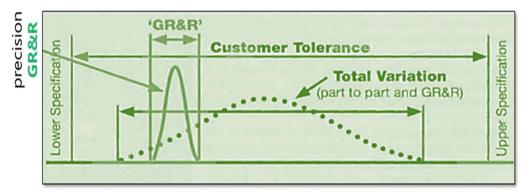
Bias is the *difference* between a part's reference value and the operator's measurements of the part.


Here, the **%Bias** (over/under reading) for the reference average is only **0.3**, which means that the gauge bias accounts for less than **0.3%** of the overall process variation –

.Consequently, **Linearity** is the predominant problem!

Precision (Repeatability & Reproducibility) study


To determine the **precision** of a measurement system, a selection of products are measured several times – with different people (appraisers) – using the same gauge.



As the components are <u>not</u> changing – any variation in results must represent the **Repeatability** of the gauge (equipment) and the **Reproducibility** of measurements by different people (appraisers).

A **GR&R Study** *repeats* this approach on several parts to assess the results in a single study.

The following schematic illustrates the GR&R acceptability criteria –

GR&R as a percentage of the **Customer Tolerance** = **GR&R** ÷ **Customer Tolerance** x **100%**

Case Study

Choosing **10 parts**, **3 operators** and measuring **3 times** is a common **GR&R Study** 'standard practice'. Always ensure that the operators (appraisers) measure the parts under 'typical' conditions and in *random order* –

- 1. Obtain a sample of <u>10</u> parts that represent the *full operating range* of the process
- 2. Select the operators (**A**, **B**, **C**, ...) and number the parts **1** through **10** so that the numbers are **not visible** to the appraisers
- 3. Identify and calibrate the gauge!
- 4. Have the appraisers measure the <u>10</u> parts **separately** and in a **random order trial** #1
- 5. Repeat the cycle using a different random order of measurement trial #2
- 6. Repeat the cycle again using a **different random order** of measurement **trial #3**

This Case Study is a 'real one' conducted during a typical **TEC** class workshop. The focus is the measurement of a shaft diameter designated as a **Key Characteristic** (**KC**) by the customer –

The diameter has a **nominal** of **0.553** and a **tolerance** of **0.002** (USL – LSL).

The results as recorded -

1 9 Daren 0.55380 31 6 Daren 0.55395 61 2 Daren 0.55380 2 7 Daren 0.55360 32 2 Daren 0.55300 62 10 Daren 0.55330 3 6 Daren 0.55340 33 8 Daren 0.55370 63 5 Daren 0.55330 4 4 Daren 0.55345 34 10 Daren 0.55380 64 7 Daren 0.55355 5 1 Daren 0.55305 36 3 Daren 0.55380 65 8 Daren 0.55380 6 2 Daren 0.55335 36 3 Daren 0.55385 66 9 Daren 0.55385 8 5 Daren 0.55335 38 4 Daren 0.55345 68 3 Daren 0.55345 9 8 Daren 0.55335												
2 7 Daren 0.55360 32 2 Daren 0.55300 62 10 Daren 0.55380 3 6 Daren 0.55400 33 8 Daren 0.55370 63 5 Daren 0.55385 5 1 Daren 0.55295 35 9 Daren 0.55380 65 8 Daren 0.55370 6 2 Daren 0.55305 36 3 Daren 0.55370 66 9 Daren 0.55380 7 3 Daren 0.55380 37 5 Daren 0.55335 66 9 Daren 0.55380 8 5 Daren 0.55335 38 4 Daren 0.55335 67 6 Daren 0.55386 9 8 Daren 0.55335 38 4 Daren 0.55340 40 Daren 0.55340 10 10 Daren 0.55385	RunOrder	Parts	Operators	Measurement	RunOrder	Parts	Operators	Measurement	RunOrder	Parts	Operators	Measure ment
3 6 Daren 0.55400 33 8 Daren 0.55370 63 5 Daren 0.55330 4 4 4 Daren 0.55345 34 10 Daren 0.55380 64 7 Daren 0.55355 5 1 Daren 0.55345 35 9 Daren 0.55380 66 9 Daren 0.55370 66 2 Daren 0.55305 36 3 Daren 0.55370 66 9 Daren 0.55370 66 9 Daren 0.55370 66 9 Daren 0.55380 7 3 Daren 0.55335 38 4 Daren 0.55375 66 9 Daren 0.55385 8 5 Daren 0.55335 38 4 Daren 0.55345 68 3 Daren 0.55335 10	1	9	Daren	0.55380	31	6	Daren	0.55395	61	2	Daren	0.55295
4 4 Daren 0.55345 34 10 Daren 0.55380 64 7 Daren 0.55355 5 1 Daren 0.55345 35 9 Daren 0.55380 65 8 Daren 0.55370 6 2 Daren 0.55305 36 3 Daren 0.55370 66 9 Daren 0.55380 7 3 Daren 0.55335 38 4 Daren 0.55325 67 6 Daren 0.55395 8 5 Daren 0.55375 39 7 Daren 0.55355 69 4 Daren 0.55340 10 10 Daren 0.55385 40 1 Daren 0.55355 69 4 Daren 0.55340 11 5 Tim 0.55385 42 8 Tim 0.55385 71 9 Tim 0.55380 12 9 Tim 0.55345	2	7	Daren	0.55360	32	2	Daren	0.55300	62	10	Daren	0.55380
5 1 Daren 0.55295 35 9 Daren 0.55380 65 8 Daren 0.55370 6 2 Daren 0.55305 36 3 Daren 0.55370 66 9 Daren 0.55380 7 3 Daren 0.55335 38 4 Daren 0.55345 68 3 Daren 0.55365 8 5 Daren 0.55335 38 4 Daren 0.55345 68 3 Daren 0.55365 9 8 Daren 0.55375 39 7 Daren 0.55355 69 4 Daren 0.55340 10 10 Daren 0.55385 40 1 Daren 0.55355 69 4 Daren 0.55340 11 5 Tim 0.55385 42 8 Tim 0.55370 72 5 Tim 0.55340 12 9 Tim 0.55385	3	6	Daren	0.55400	33	8	Daren	0.55370	63	5	Daren	0.55330
6 2 Daren 0.55305 36 3 Daren 0.55380 37 5 Daren 0.55385 66 9 Daren 0.55389 8 5 Daren 0.55335 38 4 Daren 0.55345 68 3 Daren 0.55365 9 8 Daren 0.55375 39 7 Daren 0.55355 69 4 Daren 0.55340 10 10 Daren 0.55355 40 1 Daren 0.55290 70 1 Daren 0.55340 11 5 Tim 0.55325 41 7 Tim 0.55355 71 9 Tim 0.55380 12 9 Tim 0.553365 42 8 Tim 0.55370 72 5 Tim 0.55325 13 1 Tim 0.55336 42 8 Tim 0.55370 72 5 Tim 0.55325	4	4	Daren	0.55345	34	10	Daren	0.55380	64	7	Daren	0.55355
7 3 Daren 0.55380 37 5 Daren 0.55325 67 6 Daren 0.55395 8 5 Daren 0.55335 38 4 Daren 0.55345 68 3 Daren 0.55365 9 8 Daren 0.55375 39 7 Daren 0.55355 69 4 Daren 0.55340 10 10 Daren 0.55385 40 1 Daren 0.55390 70 1 Daren 0.55285 11 5 Tim 0.55385 42 8 Tim 0.55370 72 5 Tim 0.55385 12 9 Tim 0.55385 42 8 Tim 0.55370 72 5 Tim 0.55325 13 1 Tim 0.55380 43 10 Tim 0.55380 73 4 Tim 0.55345 14 4 Tim 0.55345 <	5	1	Daren	0.55295	35	9	Daren	0.55380	65	8	Daren	0.55370
8 5 Daren 0.55335 38 4 Daren 0.55345 68 3 Daren 0.55365 9 8 Daren 0.55375 39 7 Daren 0.55355 69 4 Daren 0.55340 10 10 Daren 0.55385 40 1 Daren 0.55385 70 1 Daren 0.55380 11 5 Tim 0.55325 41 7 Tim 0.55355 71 9 Tim 0.55380 12 9 Tim 0.55385 42 8 Tim 0.55370 72 5 Tim 0.55325 13 1 Tim 0.55340 44 3 Tim 0.55380 73 4 Tim 0.55340 14 4 Tim 0.55340 44 3 Tim 0.55370 74 6 Tim 0.55340 14 4 Tim 0.55340 44 3 Tim 0.55370 74 6 Tim 0.55340 15 3 Tim 0.55375 45 1 Tim 0.55380 75 8 Tim 0.55370 16 10 Tim 0.55385 46 5 Tim 0.55320 76 3 Tim 0.55370 16 10 Tim 0.55385 46 5 Tim 0.55320 76 3 Tim 0.55370 16 10 Tim 0.55385 46 5 Tim 0.55330 77 1 Tim 0.55385 17 8 Tim 0.55370 18 2 Tim 0.55355 49 2 Tim 0.55335 78 7 Tim 0.55355 19 7 Tim 0.55355 49 2 Tim 0.55395 80 10 Tim 0.55395 19 7 Tim 0.55355 49 2 Tim 0.55395 80 10 Tim 0.55380 12 3 Gurpreet 0.55370 51 4 Gurpreet 0.55370 51 4 Gurpreet 0.55375 52 10 Gurpreet 0.55375 82 Gurpreet 0.55375 52 Gurpreet 0.55375 85 Gurpreet 0.55330 86 4 Gurpreet 0.55335 87	6	2	Daren	0.55305	36	3	Daren	0.55370	66	9	Daren	0.55380
9 8 Daren 0.55375 39 7 Daren 0.55355 69 4 Daren 0.55340 10 10 Daren 0.55385 40 1 Daren 0.55290 70 1 Daren 0.55285 11 5 Tim 0.55325 41 7 Tim 0.55385 71 9 Tim 0.55380 12 9 Tim 0.55385 42 8 Tim 0.55370 72 5 Tim 0.55325 13 1 Tim 0.55340 44 3 Tim 0.55370 72 5 Tim 0.55325 13 1 Tim 0.55340 44 3 Tim 0.55370 74 6 Tim 0.55395 15 3 Tim 0.55340 44 3 Tim 0.55370 74 6 Tim 0.55395 15 3 Tim 0.55395 45	7	3	Daren	0.55380	37	5	Daren	0.55325	67	6	Daren	0.55395
10 10 Daren 0.55385 40 1 Daren 0.55290 70 1 Daren 0.55285 11 5 Tim 0.55325 41 7 Tim 0.55355 71 9 Tim 0.55380 12 9 Tim 0.55385 42 8 Tim 0.55370 72 5 Tim 0.55325 13 1 Tim 0.55290 43 10 Tim 0.55380 73 4 Tim 0.55340 14 4 Tim 0.55340 44 3 Tim 0.55370 74 6 Tim 0.55340 15 3 Tim 0.55375 45 1 Tim 0.55380 75 8 Tim 0.55395 16 10 Tim 0.55385 46 5 Tim 0.55380 77 1 Tim 0.55395 17 8 Tim 0.55395 47	8	5	Daren	0.55335	38	4	Daren	0.55345	68	3	Daren	0.55365
11 5 Tim 0.55325 41 7 Tim 0.55355 71 9 Tim 0.55380 12 9 Tim 0.55385 42 8 Tim 0.55370 72 5 Tim 0.55325 13 1 Tim 0.55340 44 3 Tim 0.55380 73 4 Tim 0.55340 14 4 Tim 0.55340 44 3 Tim 0.55370 74 6 Tim 0.55395 15 3 Tim 0.55375 45 1 Tim 0.55285 75 8 Tim 0.55370 16 10 Tim 0.55385 46 5 Tim 0.55320 76 3 Tim 0.55376 17 8 Tim 0.55385 46 5 Tim 0.55380 77 1 Tim 0.55386 17 8 Tim 0.55395 47 <td< td=""><td>9</td><td>8</td><td>Daren</td><td>0.55375</td><td>39</td><td>7</td><td>Daren</td><td>0.55355</td><td>69</td><td>4</td><td>Daren</td><td>0.55340</td></td<>	9	8	Daren	0.55375	39	7	Daren	0.55355	69	4	Daren	0.55340
12 9 Tim 0.55385 42 8 Tim 0.55370 72 5 Tim 0.55325 13 1 Tim 0.55290 43 10 Tim 0.55380 73 4 Tim 0.55340 14 4 Tim 0.55340 44 3 Tim 0.55370 74 6 Tim 0.55395 15 3 Tim 0.55375 45 1 Tim 0.55380 75 8 Tim 0.55370 16 10 Tim 0.55385 46 5 Tim 0.55320 76 3 Tim 0.55365 17 8 Tim 0.55380 47 9 Tim 0.55380 77 1 Tim 0.55355 18 2 Tim 0.55350 48 4 Tim 0.55335 78 7 Tim 0.55385 19 7 Tim 0.55395 50 <t< td=""><td>10</td><td>10</td><td>Daren</td><td>0.55385</td><td>40</td><td>1</td><td>Daren</td><td>0.55290</td><td>70</td><td>1</td><td>Daren</td><td>0.55285</td></t<>	10	10	Daren	0.55385	40	1	Daren	0.55290	70	1	Daren	0.55285
13 1 Tim 0.55290 43 10 Tim 0.55380 73 4 Tim 0.55340 14 4 Tim 0.55340 44 3 Tim 0.55370 74 6 Tim 0.55395 15 3 Tim 0.55375 45 1 Tim 0.55285 75 8 Tim 0.55370 16 10 Tim 0.55385 46 5 Tim 0.55320 76 3 Tim 0.55365 17 8 Tim 0.55375 47 9 Tim 0.55380 77 1 Tim 0.55365 18 2 Tim 0.55300 48 4 Tim 0.55335 78 7 Tim 0.55355 19 7 Tim 0.55335 49 2 Tim 0.55395 79 2 Tim 0.55395 20 6 Tim 0.553395 50 <	11	5	Tim	0.55325	41	7	Tim	0.55355	71	9	Tim	0.55380
14 4 Tim 0.55340 44 3 Tim 0.55370 74 6 Tim 0.55395 15 3 Tim 0.55375 45 1 Tim 0.55285 75 8 Tim 0.55370 16 10 Tim 0.55385 46 5 Tim 0.55320 76 3 Tim 0.55365 17 8 Tim 0.55375 47 9 Tim 0.55380 77 1 Tim 0.55290 18 2 Tim 0.55300 48 4 Tim 0.55335 78 7 Tim 0.55295 19 7 Tim 0.55395 49 2 Tim 0.55395 79 2 Tim 0.55295 19 7 Tim 0.55395 50 6 Tim 0.55395 79 2 Tim 0.55395 20 6 Tim 0.55395 50 <td< td=""><td>12</td><td>9</td><td>Tim</td><td>0.55385</td><td>42</td><td>8</td><td>Tim</td><td>0.55370</td><td>72</td><td>5</td><td>Tim</td><td>0.55325</td></td<>	12	9	Tim	0.55385	42	8	Tim	0.55370	72	5	Tim	0.55325
15 3 Tim 0.55375 45 1 Tim 0.55285 75 8 Tim 0.55370 16 10 Tim 0.55385 46 5 Tim 0.55320 76 3 Tim 0.55365 17 8 Tim 0.55375 47 9 Tim 0.55380 77 1 Tim 0.55290 18 2 Tim 0.55300 48 4 Tim 0.55335 78 7 Tim 0.55355 19 7 Tim 0.55395 49 2 Tim 0.55395 79 2 Tim 0.55295 20 6 Tim 0.55395 50 6 Tim 0.55335 80 10 Tim 0.55380 21 3 Gurpreet 0.55375 52 10 Gurpreet 0.55335 81 7 Gurpreet 0.55360 22 9 Gurpreet 0.55375 <	13	1	Tim	0.55290	43	10	Tim	0.55380	73	4	Tim	0.55340
16 10 Tim 0.55385 46 5 Tim 0.55320 76 3 Tim 0.55365 17 8 Tim 0.55375 47 9 Tim 0.55380 77 1 Tim 0.55290 18 2 Tim 0.55300 48 4 Tim 0.55335 78 7 Tim 0.55355 19 7 Tim 0.55395 49 2 Tim 0.55295 79 2 Tim 0.55295 20 6 Tim 0.55395 50 6 Tim 0.55395 80 10 Tim 0.55380 21 3 Gurpreet 0.55370 51 4 Gurpreet 0.55335 81 7 Gurpreet 0.55360 22 9 Gurpreet 0.55375 52 10 Gurpreet 0.55335 81 7 Gurpreet 0.553400 23 2 Gurpreet 0.5533	14	4	Tim	0.55340	44	3	Tim	0.55370	74	6	Tim	0.55395
17 8 Tim 0.55375 47 9 Tim 0.55380 77 1 Tim 0.55290 18 2 Tim 0.55300 48 4 Tim 0.55335 78 7 Tim 0.55355 19 7 Tim 0.55355 49 2 Tim 0.55295 79 2 Tim 0.55295 20 6 Tim 0.55395 50 6 Tim 0.55395 80 10 Tim 0.55380 21 3 Gurpreet 0.55370 51 4 Gurpreet 0.55335 81 7 Gurpreet 0.55360 22 9 Gurpreet 0.55375 52 10 Gurpreet 0.55375 82 6 Gurpreet 0.55375 23 2 Gurpreet 0.55335 54 8 Gurpreet 0.55375 84 1 Gurpreet 0.55375 24 4 Gurpreet	15	3	Tim	0.55375	45	1	Tim	0.55285	75	8	Tim	0.55370
18 2 Tim 0.55300 48 4 Tim 0.55335 78 7 Tim 0.55355 19 7 Tim 0.55355 49 2 Tim 0.55295 79 2 Tim 0.55395 20 6 Tim 0.55395 80 10 Tim 0.55380 21 3 Gurpreet 0.55370 51 4 Gurpreet 0.55335 81 7 Gurpreet 0.55360 22 9 Gurpreet 0.55375 52 10 Gurpreet 0.55375 82 6 Gurpreet 0.55400 23 2 Gurpreet 0.55335 53 2 Gurpreet 0.55290 83 8 Gurpreet 0.55375 24 4 Gurpreet 0.55335 54 8 Gurpreet 0.55395 85 5 Gurpreet 0.55395 26 6 Gurpreet 0.55330 55 6 <td< td=""><td>16</td><td>10</td><td>Tim</td><td>0.55385</td><td>46</td><td>5</td><td>Tim</td><td>0.55320</td><td>76</td><td>3</td><td>Tim</td><td>0.55365</td></td<>	16	10	Tim	0.55385	46	5	Tim	0.55320	76	3	Tim	0.55365
19 7 Tim 0.55355 49 2 Tim 0.55295 79 2 Tim 0.55395 20 6 Tim 0.55395 80 10 Tim 0.55380 21 3 Gurpreet 0.55370 51 4 Gurpreet 0.55335 81 7 Gurpreet 0.55360 22 9 Gurpreet 0.55375 52 10 Gurpreet 0.55375 82 6 Gurpreet 0.55400 23 2 Gurpreet 0.55335 54 8 Gurpreet 0.55290 83 8 Gurpreet 0.55375 24 4 Gurpreet 0.55335 54 8 Gurpreet 0.55395 85 5 Gurpreet 0.55290 25 5 Gurpreet 0.55330 55 6 Gurpreet 0.55395 85 5 Gurpreet 0.55335 26 6 Gurpreet 0.55340 56 5 </td <td>17</td> <td>8</td> <td>Tim</td> <td>0.55375</td> <td>47</td> <td>9</td> <td>Tim</td> <td>0.55380</td> <td>77</td> <td>1</td> <td>Tim</td> <td>0.55290</td>	17	8	Tim	0.55375	47	9	Tim	0.55380	77	1	Tim	0.55290
20 6 Tim 0.55395 50 6 Tim 0.55395 80 10 Tim 0.55380 21 3 Gurpreet 0.55370 51 4 Gurpreet 0.55335 81 7 Gurpreet 0.55360 22 9 Gurpreet 0.55375 52 10 Gurpreet 0.55375 82 6 Gurpreet 0.55400 23 2 Gurpreet 0.55295 53 2 Gurpreet 0.55290 83 8 Gurpreet 0.55375 24 4 Gurpreet 0.55335 54 8 Gurpreet 0.55395 84 1 Gurpreet 0.55395 25 5 Gurpreet 0.55330 55 6 Gurpreet 0.55395 85 5 Gurpreet 0.55335 26 6 Gurpreet 0.553400 56 5 Gurpreet 0.55330 86 4 Gurpreet 0.55300 28	18	2	Tim	0.55300	48	4	Tim	0.55335	78	7	Tim	0.55355
21 3 Gurpreet 0.55370 51 4 Gurpreet 0.55335 81 7 Gurpreet 0.55360 22 9 Gurpreet 0.55375 82 6 Gurpreet 0.55400 23 2 Gurpreet 0.55295 53 2 Gurpreet 0.55290 83 8 Gurpreet 0.55375 24 4 Gurpreet 0.55335 54 8 Gurpreet 0.55365 84 1 Gurpreet 0.55290 25 5 Gurpreet 0.55330 55 6 Gurpreet 0.55395 85 5 Gurpreet 0.55335 26 6 Gurpreet 0.55400 56 5 Gurpreet 0.55330 86 4 Gurpreet 0.55340 27 10 Gurpreet 0.55380 57 7 Gurpreet 0.55370 88 3 Gurpreet 0.55370 29 8 Gurpreet 0.55370 <td< td=""><td>19</td><td>7</td><td>Tim</td><td>0.55355</td><td>49</td><td>2</td><td>Tim</td><td>0.55295</td><td>79</td><td>2</td><td>Tim</td><td>0.55295</td></td<>	19	7	Tim	0.55355	49	2	Tim	0.55295	79	2	Tim	0.55295
22 9 Gurpreet 0.55375 52 10 Gurpreet 0.55375 82 6 Gurpreet 0.55400 23 2 Gurpreet 0.55295 53 2 Gurpreet 0.55290 83 8 Gurpreet 0.55375 24 4 Gurpreet 0.55335 54 8 Gurpreet 0.55365 84 1 Gurpreet 0.55290 25 5 Gurpreet 0.55330 55 6 Gurpreet 0.55395 85 5 Gurpreet 0.55335 26 6 Gurpreet 0.55400 56 5 Gurpreet 0.55330 86 4 Gurpreet 0.55340 27 10 Gurpreet 0.55380 57 7 Gurpreet 0.55355 87 2 Gurpreet 0.55370 28 7 Gurpreet 0.55370 59 9 Gurpreet 0.55375 89 9 Gurpreet 0.55385	20	6	Tim	0.55395	50	6	Tim	0.55395	80	10	Tim	0.55380
23 2 Gurpreet 0.55295 53 2 Gurpreet 0.55290 83 8 Gurpreet 0.55375 24 4 Gurpreet 0.55335 54 8 Gurpreet 0.55365 84 1 Gurpreet 0.55290 25 5 Gurpreet 0.55330 55 6 Gurpreet 0.55395 85 5 Gurpreet 0.55335 26 6 Gurpreet 0.55400 56 5 Gurpreet 0.55330 86 4 Gurpreet 0.55340 27 10 Gurpreet 0.55380 57 7 Gurpreet 0.55355 87 2 Gurpreet 0.55300 28 7 Gurpreet 0.55375 58 3 Gurpreet 0.55370 88 3 Gurpreet 0.55385 29 8 Gurpreet 0.55370 59 9 Gurpreet 0.55375 89 9 Gurpreet 0.55385	21	3	Gurpreet	0.55370	51	4	Gurpreet	0.55335	81	7	Gurpreet	0.55360
24 4 Gurpreet 0.55335 54 8 Gurpreet 0.55365 84 1 Gurpreet 0.55290 25 5 Gurpreet 0.55330 55 6 Gurpreet 0.55395 85 5 Gurpreet 0.55335 26 6 Gurpreet 0.55400 56 5 Gurpreet 0.55330 86 4 Gurpreet 0.55340 27 10 Gurpreet 0.55380 57 7 Gurpreet 0.55355 87 2 Gurpreet 0.55300 28 7 Gurpreet 0.55375 58 3 Gurpreet 0.55370 88 3 Gurpreet 0.55385 29 8 Gurpreet 0.55370 59 9 Gurpreet 0.55375 89 9 Gurpreet 0.55385	22	9	Gurpreet	0.55375	52	10	Gurpreet	0.55375	82	6	Gurpreet	0.55400
25 5 Gurpreet 0.55330 55 6 Gurpreet 0.55395 85 5 Gurpreet 0.55335 26 6 Gurpreet 0.55400 56 5 Gurpreet 0.55330 86 4 Gurpreet 0.55340 27 10 Gurpreet 0.55380 57 7 Gurpreet 0.55355 87 2 Gurpreet 0.55300 28 7 Gurpreet 0.55355 58 3 Gurpreet 0.55370 88 3 Gurpreet 0.55370 29 8 Gurpreet 0.55370 59 9 Gurpreet 0.55375 89 9 Gurpreet 0.55385	23	2	Gurpreet	0.55295	53	2	Gurpreet	0.55290	83	8	Gurpreet	0.55375
26 6 Gurpreet 0.55400 56 5 Gurpreet 0.55330 86 4 Gurpreet 0.55340 27 10 Gurpreet 0.55380 57 7 Gurpreet 0.55355 87 2 Gurpreet 0.55300 28 7 Gurpreet 0.55355 58 3 Gurpreet 0.55370 88 3 Gurpreet 0.55370 29 8 Gurpreet 0.55370 59 9 Gurpreet 0.55375 89 9 Gurpreet 0.55385	24	4	Gurpreet	0.55335	54	8	Gurpreet	0.55365	84	1	Gurpreet	0.55290
27 10 Gurpreet 0.55380 57 7 Gurpreet 0.55355 87 2 Gurpreet 0.55300 28 7 Gurpreet 0.55355 58 3 Gurpreet 0.55370 88 3 Gurpreet 0.55370 29 8 Gurpreet 0.55370 59 9 Gurpreet 0.55375 89 9 Gurpreet 0.55385	25	5	Gurpreet	0.55330	55	6	Gurpreet	0.55395	85	5	Gurpreet	0.55335
28 7 Gurpreet 0.55355 58 3 Gurpreet 0.55370 88 3 Gurpreet 0.55370 29 8 Gurpreet 0.55370 59 9 Gurpreet 0.55375 89 9 Gurpreet 0.55385	26	6	Gurpreet	0.55400	56	5	Gurpreet	0.55330	86	4	Gurpreet	0.55340
29 8 Gurpreet 0.55370 59 9 Gurpreet 0.55375 89 9 Gurpreet 0.55385	27	10	Gurpreet	0.55380	57	7	Gurpreet	0.55355	87	2	Gurpreet	0.55300
	28	7	Gurpreet	0.55355	58	3	Gurpreet	0.55370	88	3	Gurpreet	0.55370
30 1 Gurpreet 0.55285 60 1 Gurpreet 0.55285 90 10 Gurpreet 0.55385	29	8	Gurpreet	0.55370	59	9	Gurpreet	0.55375	89	9	Gurpreet	0.55385
50 1 Garpreet 0.55505 50 1 Garpreet 0.55505 50 10 Garpreet 0.55505	30	1	Gurpreet	0.55285	60	1	Gurpreet	0.55285	90	10	Gurpreet	0.55385

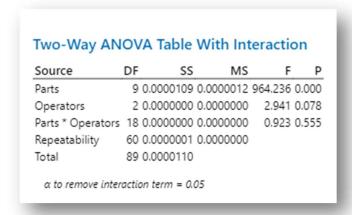
Study results

Using Minitab®, a Gauge Linearity and Bias Study was performed using Minitab®–

Choose Stat > Quality Tools > Gage Study > Gage R&R Study (Crossed)

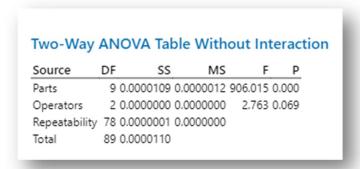
in Part numbers, enter Parts

in Operators, enter Operators

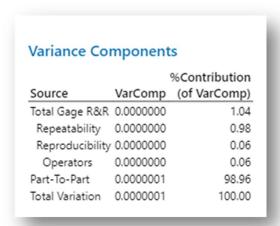

in Measurement data, enter Measurement

in Method of Analysis, select ANOVA

Click OK

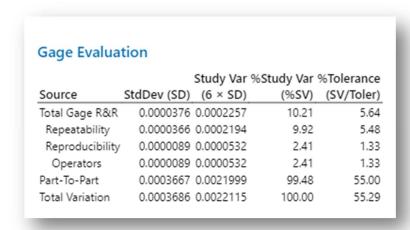

The following analysis is displayed -

The Two-Way **ANOVA** Table includes terms for **parts**, **operators**, and the **parts-operators** interaction –



If the **p-value** for the **Parts*Operators** interaction is \geq **0.05**, **Minitab**[®] omits the interaction from the full model because it is <u>not</u> significant.

In the Case Study, the p-value is **0.555**, so Minitab generates a second two-way ANOVA table that omits the interaction from the final model.


The **Variance Components** (**VarComp**) is used to compare the variation from each source of measurement error to the total variation –

In the **Case Study**, the **%Contribution** (of VarComp) column in the Gauge R&R table shows that the variation from **Part-To-Part** is **98.96%**.

This value is much larger than **Total Gauge R&R**, which is just **1.04%** consequently, much of the variation is due to *differences* between **parts**.

The **Gauge Evaluation** is used to compare the measurement system variation (**%Study Var**) to the total variation.

Number of Distinct Categories = 13

The **Total Gauge R&R** equals **10.21%** of the study variation. This **Total Gage R&R** percentage contribution is very likely to be acceptable depending on the application.

Measurement Systems Analysis (MSA)

For this data, the **Number of Distinct Categories** is **13**. According to the AIAG, you need at least **5** distinct categories to have an adequate measuring system – so this is again okay!

The same data is also quoted in terms of a percentage of tolerance (**%Tolerance**) which is **5.64%** – likely to be of greater importance to the customer.

Individual values of **Repeatability** (9.92% and 5.48% respectively) and **Reproducibility/Operators** (2.41% and 1.33% respectively).

Okay, but are these results acceptable?

We have three options -

- percentage of variation
- percentage of tolerance
- Number of Distinct Categories

Requirements for GR&R acceptability

The acceptability of a measurement system is usually expressed in terms of the percentage of a characteristic's tolerance (USL – LSL) and default to sector-specific limits or as specified by the customer concerned.

Automotive (AIAG)

Acceptance limits for characteristics identified in the control plan -

<10%: Measurement system is generally considered acceptable

10% - 30%: May be acceptable depending on the application, tolerance, and risk

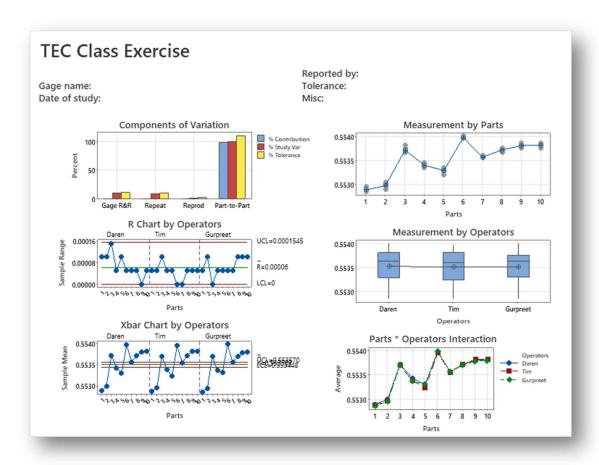
>30%: Unacceptable — the system needs improvement or replacement

Aero-Engine (AESQ) & AS13003

Separate acceptance limits for different key characteristic categories are given for both repeatability and GR&R –

Critical	Major	Minor
≤10% of tolerance	≤20% of tolerance	≤30% of tolerance

Returning to our Case Study results, for both the Automotive and Aero-Engine sectors –

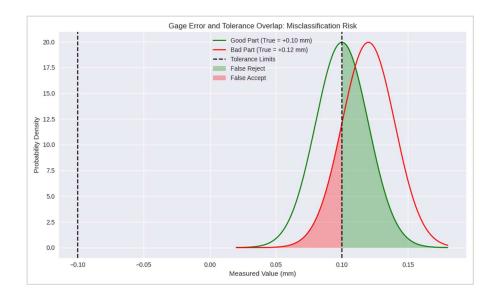

Total Gauge R&R of **10.21%** (**study**) is marginally above the "≤10% requirement" and **5.64%** (**tolerance**) is well below the "≤10% requirement".

The measurement system is very likely to be deemed acceptable

– subject to approval by the customer concerned

Other Minitab® Graphs

Other graphs also provide the useful information about the measurement system:


- **Components of Variation** graph displays the %Contribution from Part-To-Part is larger than that of Total Gauge R&R. Thus, much of the variation is due to differences between parts
- **R Chart by Operators** shows that Daren measures parts more consistently
- **X**_{bar} **Chart by Operators** shows that the majority of the points are **outside** the control limits thus, much of the variation is due to differences between parts
- **Measurement by Part** shows that the differences between parts are large
- **Measurement by Operator** graph, the differences between operators are small compared to the differences between parts. Daren's measurements are slightly higher than the measurements of the other operators and Tim's shows slightly larger variation
- Operator * Part Interaction lines are *parallel* and the **p-value** for the Operator*Part interaction found in the table is **0.555**. These results indicate that no significant interaction between each Part and Operator exists.

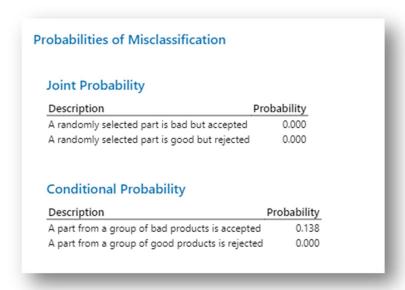
Probabilities of misclassification

In any measurement system there are always risks of **misclassification** because of the gauge variation consequently, the measured value of the part does not always equal the true value of the part.

This discrepancy between the measured value and the actual value creates the potential for 'misclassifying' the part.

Consider this visualization shows how **gauge error** overlaps with **tolerance limits** (in this example it's the **USL**) and where misclassification risk arises

- Green curve: Distribution of measured values for a good part at +0.10 mm (exactly at the upper tolerance limit).
- Red curve: Distribution of measured values for a bad part at +0.12 mm (just outside tolerance).
- Vertical dashed lines: Engineering tolerance limits (±0.10 mm).
- Shaded regions:
 - o False Reject (green area): Good parts measured above +0.10 mm.
 - o False Accept (red area): Bad parts measured below +0.10 mm.


In this example

- False Accepts: About 16% of bad parts just outside tolerance may slip through
- False Rejects: About 50% of borderline good parts risk being rejected
- The AIAG Gauge R&R would only say ">30% variation is not acceptable"

Probabilities of misclassification with Minitab®

Because we have the specification limits 0.551 - 0.555 mm quoted for our Case Study, Minitab[®] calculates the probabilities of *misclassifying* product.

Minitab[®] calculates both the **joint probabilities** and the **conditional probabilities** of misclassification

Joint probability

Use the joint probability when prior knowledge about the acceptability of the parts is unknown. For example, when sampling from the line and it is not known whether each particular part is good or bad.

There are two misclassifications that can be made –

- The probability that the part is **bad**, and you **accept** it (**0.000** = **zero%**)
- The probability that the part is good, and you reject it (0.000 = zero%)

Conditional probability

Use the conditional probability when prior knowledge about the acceptability of the parts is known. For example, when sampling from a pile of rework or from a pile of product that will soon be shipped as good.

There are two misclassifications that can be me made –

Measurement Systems Analysis (MSA)

- The probability that you *accept* a part that was sampled from a pile of **bad** product that needs to be reworked also called false accept (**0.138** = **13.8%**)
- The probability that you reject a part that was sampled from a pile of good product that is about to be shipped – also called false reject (0.000 = zero%)

What are acceptable figures?

Acceptable thresholds for both types of 'misclassification' are not formally quoted by Automotive (AIAG), Aero-Engine (AESQ) or Wheeler. But for the **joint probability** figure general guidelines for include –

- < 0.01 (1%) is ideal for critical applications (e.g. automotive, aero-engine, aerospace)
- < 0.05 (5%) is acceptable for most manufacturing environments
- > 0.10 (10%) may indicate a poor measurement system needing improvement

For this Case Study: considering these **probabilities of misclassification figures** and the previous **GR&R results**, we can say that the measurement system would be **acceptable** by both Automotive (AIAG) and Aero-Engine (AESQ) customers.

Unsatisfactory GR&R results

Aero-engine example

In the Case Study shown in AESQ's Reference Manual: **RM13003** (5.19.3), an aero engine organization is manufacturing machined structures. An inspection device is used to determine a **critical feature** on one of the parts. To evaluate the measurement system and determine if it is fit for its intended purpose an MSA (GR&R) is conducted.

The critical feature is an outer diameter with specification limits **838.60** - **838.80** mm (total tolerance = **0.2** mm). The inspection device is a dial gauge comparator together with a master gauge.

Ten parts were selected that represent the expected range of the process variation. Three operators measured the ten parts, three times per part, in a random order without seeing each other's readings.

Here is the data taken from **RM13003** (5.19.3) –

	Operator A			Operator B			Operator C		
Part	Trial 1	Trial 2	Trial 3	Trial 1	Trial 2	Trial 3	Trial 1	Trial 2	Trial 3
1	838.79	838.77	838.80	838.78	838.77	838.79	838.78	838.80	838.79
2	838.69	838.68	838.70	838.69	838.70	838.72	838.72	838.69	838.73
3	838.72	838.69	838.71	838.70	838.71	838.73	838.72	838.74	838.71
4	838.75	838.74	838.73	838.73	838.75	838.73	838.76	838.76	838.72
5	838.73	838.72	838.70	838.71	838.73	838.72	838.73	838.73	838.75
6	838.77	838.79	838.79	838.77	838.79	838.77	838.78	838.79	838.78
7	838.67	838.68	838.69	838.70	838.69	838.66	838.68	838.67	838.70
8	838.60	838.61	838.62	838.61	838.64	838.60	838.62	838.60	838.62
9	838.63	838.65	838.66	838.66	838.63	838.65	838.66	838.65	838.64
10	838.78	838.78	838.77	838.77	838.78	838.75	838.77	838.75	838.76

The **Sigma Value** was set at **6.00**.

The **Gauge Evaluation** is used to compare the measurement system variation (**%Study Var**) to the total variation and as a percentage of tolerance (**%Tolerance**) –

Gage Evalua	tion			
		Study Var	%Study Var	%Tolerance
Source	StdDev (SD)	(6 × SD)	(%SV)	(SV/Toler)
Total Gage R&R	0.0135053	0.081032	23.22	40.52
Repeatability	0.0132723	0.079634	22.82	39.82
Reproducibility	0.0024979	0.014987	4.29	7.49
Operator	0.0024979	0.014987	4.29	7.49
Part-To-Part	0.0565803	0.339482	97.27	169.74
Total Variation	0.0581698	0.349019	100.00	174.51

In this example, the Gauge R&R **%Tolerance** figure was **40.52%**, that is greater than the permitted maximum of **10%** for a **critical feature**.

The measurement system is therefore deemed to be **unacceptable**

As we have the specification limits **838.6** – **838.8** quoted for this Case Study, Minitab® calculates the probabilities of *misclassifying* product.

Minitab[®] calculates both the **joint probabilities** and the **conditional probabilities** of misclassification

Joint Probability	
Description	Probability
A randomly selected part is bad but accepted	0.014
A randomly selected part is good but rejected	0.022
Conditional Probability	
Conditional Probability Description	Probability
•	Probability 0.15

Automotive example

In the Case Study shown in IAQG's Reference Manual: **MEASUREMENT SYSTEMS ANALYSIS** (4th Edition), ten parts were selected that represent the expected range of the process variation. Three operators measured the ten parts, three times per part, in a random order without seeing each other's readings.

Here is the Data Collection Sheet -

	Appraiser					P	ART				
	/Trial#	1	2	3	4	5	6	7	8	9	10
Α	1	0.29	-0.56	1.34	0.47	-0.80	0.02	0.59	-0.31	2.26	-1.36
	2	0.41	-0.68	1.17	0.50	-0.92	-0.11	0.75	-0.20	1.99	-1.25
	3	0.64	-0.58	1.27	0.64	-0.84	-0.21	0.66	-0.17	2.01	-1.31
	Average										
	Range										
В	1	0.08	-0.47	1.19	0.01	-0.56	-0.20	0.47	-0.63	1.80	-1.68
	2	0.25	-1.22	0.94	1.03	-1.20	0.22	0.55	0.08	2.12	-1.62
	3	0.07	-0.68	1.34	0.20	-1.28	0.06	0.83	-0.34	2.19	-1.50
	Average										
	Range										
С	1	0.04	-1.38	0.88	0.14	-1.46	-0.29	0.02	-0.46	1.77	-1.49
	2	-0.11	-1.13	1.09	0.20	-1.07	-0.67	0.01	-0.56	1.45	-1.77
	3	-0.15	-0.96	0.67	0.11	-1.45	-0.49	0.21	-0.49	1.87	-2.16
	Average										
	Range										
	Part Average										

To match the AIAG calculations, the **Sigma Value** was set at **5.15**.

The **Gauge Evaluation** is used to compare the measurement system variation (**%Study Var**) to the total variation and as a percentage of tolerance (**%Tolerance**) –

Gage Evaluation											
		Study Var	%Study Var								
Source	StdDev (SD)	(5.15 × SD)	(%SV)								
Total Gage R&R	0.30237	1.55721	27.86								
Repeatability	0.19993	1.02966	18.42								
Reproducibility	0.22684	1.16821	20.90								
Operator	0.22684	1.16821	20.90								
Part-To-Part	1.04233	5.36799	96.04								
Total Variation	1.08530	5.58929	100.00								

In this example, the Gauge R&R **%Study Var** figure was **27.86%**, that is just within the 10% - 30% band (and may be acceptable depending on the application, tolerance, and risk).

The measurement system *may* therefore be deemed to be **acceptable**

Because we have <u>not</u> provided the **specification limits**, Minitab[®] cannot calculate the probabilities of *misclassifying* product.

Dealing with unacceptable GR&R results

If the results of a GR&R Study yield **unacceptable** results, sources of variation in the measurement system must identified and reduced – starting with the gauge, operators, and procedures.

A structured approach is recommended

1. Analyze the GR&R Results Thoroughly

• **Use the ANOVA table** to pinpoint significant sources of variation – whether it is the part, operator, or interaction between them

 Review graphs and variance components to visualize where inconsistencies arise (e.g. operator bias or inconsistent readings)

2. Troubleshoot Key Components

Gauge/Instrument Issues:

- Check calibration and maintenance records
- o Replace or upgrade the gauge if it is inherently imprecise
- Ensure the gauge is suitable for the tolerance range of the parts being measured

• Operator Inconsistency:

- Standardize procedures to reduce subjective judgment
- Provide training to ensure consistent measurement techniques
- o Limit the number of operators if variability is high

Measurement Procedure:

- Clarify instructions and reduce ambiguity
- Automate measurements where possible to reduce human error
- Ensure environmental conditions (temperature, lighting, vibration) are stable and controlled

3. Refine the Study Design

- Increase the number of parts, trials, or operators to get more reliable data
- Ensure parts used in the study represent the full range of variation in production –

"You need some 'BAD' parts to conduct a 'GOOD' Gauge R&R Study!"

Randomize the order of measurements to reduce bias.

4. Repeat the GR&R Study

• After implementing improvements, re-run the GR&R study to validate changes

Measurement Systems Analysis (MSA)

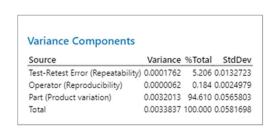
- Aim for a %GRR (Gauge R&R) of less than 10% for high-precision systems, or under 20% for less critical applications
 - o "Always confirm with the customer!"

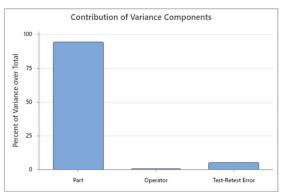
5. Document and Monitor

- Record all changes made to the measurement system
- Establish ongoing monitoring to catch drift or degradation in measurement quality

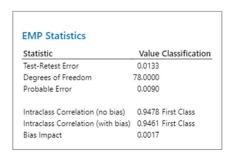
Wheeler's 'Honest' EMP Study – ANOVA Method

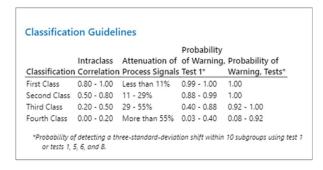
An alternative Gauge R&R study has been proposed by Dr Donald Wheeler in the form of his 'Honest' EMP Studies (2006) that describes the calculations, output, and classifications for the EMP crossed study. Also known as Wheeler's Method, Honest Gauge R&R Study or Wheeler's 'Honest' EMP Study.


In many respects, AIAG Gauge R&R studies and Wheeler's EMP studies are similar. The collection of subgroups of measurements by part and operator are common to both studies. The results for both studies include assessments of the stability of the measurements.


The principal difference in the methods is how they determine whether a measurement system is acceptable.

The development of the GR&R Study by the automotive/aero-engine sectors is from a tradition of processes that require high precision from the measurements to meet tight tolerances of characteristics on safety-critical products. The development of Wheeler's EMP criteria comes from a tradition that uses the measurement system to detect shifts in the process average for process improvement activities – and are less strict.


Bearing in mind that the Case Study shown in AESQ's Reference Manual: **RM13003** has been shown to be **unacceptable** for any characteristic category, let us apply the EMP (Crossed) Study – ANOVA Method criteria to the data


The **Variance Components**, Test-Retest Error – Repeatability (**5.206%**) and Operator – Reproducibility (**0.184%**), are very small in comparison to the Part – Product variation (**94.619%**) –

The **EMP Statistics** demonstrate that the measurement system is assessed to be '**First Class**' using the **Classification Guidelines** –

Reminder: AIAG Gauge R&R study rejected this gauge based on % contribution –

		Study Var	%Study Var	%Toleranc
Source	StdDev (SD)		(%SV)	(SV/Tole
Total Gage R&R	0.0135053	0.081032	23.22	40.5
Repeatability	0.0132723	0.079634	22.82	39.8
Reproducibility	0.0024979	0.014987	4.29	7.4
Operator	0.0024979	0.014987	4.29	7.4
Part-To-Part	0.0565803	0.339482	97.27	169.7
Total Variation	0.0581698	0.349019	100.00	174.5

In the **RM13003** example, the Gauge R&R **%Tolerance** figure was **40.52%**, that is greater than the permitted maximum of **10%** for a <u>critical</u> feature.

The measurement system was therefore deemed to be **unacceptable**

As we have seen, when you specify at least one **specification limit**, Minitab[®] calculates the probabilities of **misclassifying** product – regardless of whether you are using **AIAG Gauge R&R** or **Wheeler's EMP** – and calculates both the **joint probabilities** and the **conditional probabilities** of such 'misclassification'

In this example, the same risks of 'misclassification' remain -

Joint Probability	
Description	Probability
A randomly selected part is bad but accepted	0.014
A randomly selected part is good but rejected	0.022
Conditional Probability	
Description	Probability
A part from a group of bad products is accepted	0.153
A part ironi a group or bad products is accepted	

Wheeler's 'Honest' EMP Study has a particular benefit when serial data is not available (i.e. in low volume production).

When used with serial data Wheeler's EMP can detect a shift in the process by selectively applying the industry control chart 'detection rules'. Therefore, a measurement system that might, by the AIAG Gauge R&R methods be condemned, can be shown to be entirely capable of monitoring and warning of a process shift.

For quality control purposes, Wheeler's EMP can be said to give a more 'actionable' insight.

CONCLUSION

A **GR&R Study** quantifies how much of the total variation is due to the measurement system – characterised by variation due to the gauge itself and to the operators. The resulting metrics help determine if the measurement system is precise enough to distinguish between good and bad parts.

While **Wheeler's 'Honest' EMP Study** may be used to evaluate the usefulness of a measurement system for process control and improvement applications, automotive and aero-engine customers still demand the use of the **AIAG Gauge R&R Study**.

When to still use AIAG Gauge R&R

- Compliance: If your customers require an MSA report, run AIAG Gauge R&R and keep it on file
- Benchmarking: Compare the results obtained with the AIAG Gauge R&R Study with Wheeler's 'Honest' EMP Study
- In short, do both it's easy with Minitab® but consider the impact of the "Probabilities of Misclassification" analyses

Remember the Golden Rule

"Those with the gold make the rule!"

Stability

Measurement **stability** is the change in **bias** over time. It represents the total variation in measurements of the same part measured over time. This variation over time is also referred to as **consistency** or **drift**.

A **Stability** study measures of how accurately the measurement system performs over time. That is the total variation obtained with a particular device, on the same part, when measuring a single characteristic over time (e.g. minutes, hours, days, etc.).

Establish a master sample

- Sample or Production part (in mid-range)
- Establish its reference value to traceable standard
- Designate as the master sample

Measure with gauge (experienced appraiser)

- Periodically (hourly, per shift, daily) measure master sample **3-5** times
- Take readings at different times of the day

A **control chart** may be used to monitor the stability of a measurement system by measuring a master sample using the same system over time. As measurements are taken, points within the limits indicate that the process has <u>not</u> changed, and points outside the limits indicate that the process has changed.

Plot $X_{bar} \otimes R$ (or $X_{bar} \otimes S$) control chart (time order)

- Establish control limits
- Evaluate for out-of-control or unstable conditions
- Identify any patterns (with special attention to X_{bar})

Knowledge of the equipment and measurement conditions help identify special causes when the system is found to be out-of-control or unstable.

Case Study

In this Case Study, an experience operator measured a nominated characteristic 5 times on each shift, over a total of 20-shifts.

The results as recorded -

1	2	3	4	5	6	7	8	20
6.005	6.122	6.03	5.884	5.884	6.076	6.092	6.014	6.013
6.027	6.125	5.972	5.968	5.968	6.068	6.005	5.989	5.966
6.167	6.127	6.041	6.019	6.019	5.977	5.995	6.044	6.122
5.811	5.994	6.003	6.057	6.057	5.916	5.884	5.95	6.174
6.038	5.927	6.198	6.075	6.075	5.955	5.992	5.963	6.012

Study results

Using the data, an X_{bar} & R Chart was created using Minitab $^{\otimes}-$ Choose Stat > Control Charts > Variable Charts for Subgroups > Xbar-R Subgroup sizes: 5

The following analysis is displayed -

Before interpreting the X_{bar} Chart, examine the R Chart to determine whether the process variation is in control. If the R Chart is not in control, then the control limits on the X_{bar} chart are not accurate.

The R Chart plots the subgroup *ranges*. As the subgroup size (5) is constant, then the centre line on the R Chart is the average of the subgroup ranges.

As there are no out-of-control points, the control limits on the X_{bar} Chart will be accurate.

The X_{bar} Chart plots the **average** of the measurements within each subgroup. The centre line is the average of all subgroup averages. The control limits on the X_{bar} Chart, which are set at a distance of 3 standard deviations above and below the centre line, show the amount of variation that is expected in the subgroup averages.

As there are no out-of-control points Case Study, the measurement process is considered to be '*in statistical control*' and therefore **stable**.

Conclusion

The purpose of this **article** has been to present pragmatic guidelines for assessing measuring systems used for quality control purposes. The primary focus is on MSA methods acceptable within the automotive, aero-engine and aerospace sectors.

Measurement systems can include measurement devices (e.g. gauges), operators and measurement procedures all of which can affect the measurement of a characteristic.

As we have seen, measurement error can be classified into two major categories of **Accuracy** (Linearity & Bias) and **Precision** (Repeatability & Reproducibility). The analytical methods you use will depend on customer-specific demands. We have also added **Stability** that assesses how accurately the measurement system performs over time.

MSA is a method for determining whether a measurement system is acceptable. In broad terms, in an acceptable measurement system most of the variation must be

part-to-part, meaning that the measurement system can effectively distinguish differences between parts.

In the words of David Crosby:

"If you don't know the capability of your measurement system, you don't know if your measurements or your products are good or bad"

In the words of W. Edwards Deming:

"Any technique can be useful if its limitations are understood and observed"

Remember, **MSA** does *not* evaluate the product – it evaluates the ability to measure the part accurately and consistently. If you don't know the capability of your measurement system, you don't know if your measurements or your parts are good or bad.

If measurement variation can be reduced and gauge repeatability and reproducibility ratios improved, it is easier to differentiate between parts that are in or out of specification, allowing parts to be accepted or rejected with greater confidence.

A final thought: When the measurement system is being used with Control Charts (i.e. $X_{bar} \& R$, I MR, etc.) is it still acceptable? If so, its's advisable to re-check substituting LCL for LSL and UCL for LSL.

Improving the quality of a measurement system for making quality control decisions is a cycle of investigation, correction, and validation.

TEC's Training Courses

- F-to-F Course: https://tectransnational.com/courses/measurement-systems-analysis-as13003-face-to-face ~ Bring your own products & gauges for the Workshop
- e-Learning Course: ~ https://tectransnational.com/courses/as13003-measurement-systems-analysis-msa-elearning ~ Download Excel data to test you skills